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Abstract

Algorithmic trading has become a popular strategy to trade more successfully with the assistance
of computers and machine learning. We evaluate several algorithmic strategies on Apple,
Amazon and SPY (S&P 500 Index fund) over a recent time period. We built an agent framework
that begins with an initial amount of money, makes buy/sell decisions according to the selected
strategy, and reports a return on investment at the end of the test period. We tested our agent with
technical indicators (SMA, RSI, MACD, and ADX) and machine learning models (LSTM,
ARIMA, Deep Q Learning, and Evolution Strategy). We found that the success of each strategy
varies wildly depending on the stock studied and the time period. Our machine learning methods
fared better than our technical indicators in most cases.

Introduction

Algorithmic trading executes trade orders based on pre-programmed instructions without human
intervention. This form of trading has gained increasing popularity. In 2019, 70% of shares
traded on the U.S stock exchanges were placed automatically. (Folger, J. 2020, August 28)

Algorithms have many advantages over human traders. It is a completely passive form of earning
money. Once the system is built and deployed, humans no longer need to stay in front of the
screens. Moreover, algorithms are detached from emotions, allowing trading to be more
consistent. For these reasons, we applied machine learning techniques to this trending topic.

Algorithmic trading takes many forms. In the past, people preferred technical indicators. In
recent years, the growing field of machine learning has attracted traders to explore more
advanced techniques. In this project, we built trading agents using indicators, supervised
learning, and reinforcement learning methods to maximize investment.

Background

We researched and implemented the following machine learning techniques:

Hochreiter and Schmidhuber(1997) initiated Long Short-Term Memory (LSTM) Network, and it
has been utilized in language modeling and machine translation. LSTM was leveraged to predict
the stock returns of NIFTY 50 with 5 years of historical data.(Roondiwala et al., 2015).
Meanwhile, Chen, Zhou and Dai(2015) applied the model to Chinese stock market, and achieved



the improvement in accuracy of predicting stock returns. Furthermore, attention-based LSTM
model was utilized for predicting stock price movement.(Cheng et al., 2018)

Box and Jenkins (1976) developed the Autoregressive Integrated Moving Average (ARIMA)
model and it has been used in forecasting. Mondal, Shit and Gaswami (2014) studied the
effectiveness of the ARIMA model on Indian stocks. In addition, Amry and Siregar(2019) built
the model for forecasting Indonesia Composite Index.

Reinforcement Learning(RL) algorithm was applied to make investment policies by Moody and
Saffell(2001). It was then to facilitate trade in foreign exchange markets (Forex) (Dempster and
Leemans, 2006). Most recently, researchers were trying to apply the deep Q-learning algorithm
to transactions in Forex. (Carapuco et al., 2018)

Evolution Strategy(ES) was initiated by Rechenberg(1973) and Schwefel(1977) who were
inspired by natural evolution. Korczak, Lipinski and Roger(2002) were trying to leverage this
strategy to optimize a stock portfolio taken from the French market. Myszkowski and Bicz(2010)
applied the strategy to trade futures contracts on Forex. Most recently, meta-learning algorithms
were applied to evolutionary strategy in stock trading, and it achieved less learning time with
more trading profits. (Sorensen, et al., 2020)

Data

We pulled stock price data for SPY (S&P 500 index fund), Apple, and Amazon, from Yahoo
Finance API. Our motivation for picking these stocks is as follows:

e S&P500: Widely regarded as the best possible measure of large-cap US equities and is a
market capitalization weighted index of the 500 largest publicly traded companies in the
US.

e Apple: Multinational hardware and software company designing consumer electronics
with relative steady increase in stock prices until 2019, and exponential growth after.

e Amazon: Multinational company that specializes in e-commerce, cloud computing,
digital streaming, and artificial intelligence with rapid doubling in stock prices, and
exponential growth post 2019.
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Figure 1. S&P500 stock price shows gradual increase over time, with extreme fluctuation around 2020.
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Figure 2. Apple stock price ranges from from $20 -360 up until mid-2019, and experienced exponential growth post mid-2019
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Figure 3. Amazon stock price almost doubling every 3-5 years with a surge in growth post 2019.

As detailed in the plot labels above, both Amazon and Apple experience a surge in stock prices
mid/post-2019 and this brings interesting complications to our model training process as the
agent will have to learn over time when it will be best to buy, sell, or hold stocks due to the large
increases in evaluation. Due to the volatility of the stock market and sometimes external factors
such as recessions, creating a reliable automated stock bot is difficult. In order to combat and
overcome these difficulties, we have chosen a start date of 2010-01-04. We further wanted to
maximize the available training data and as result, chose to perform a roughly 90-10 train-test
split. This gave us 90% of the data under each stock for the model to train on, and the remaining
10% data to perform testing. This design yielded the following dates:



Table 1. Training and Testing Data Timeframes

Dates
Training Dataset (S&P500, Apple, & Amazon) 2010-01-04 - 2020-08-06
Testing Dataset (S&P500, Apple, & Amazon) 2020-08-07 - 2021-04-16

Methods

We first built trading agents that utilize technical indicators as trading strategies. Indicators such
as SMA, MACD, RSI, and ADX are commonly used by many quantitative traders to evaluate
buy and sell signals. We believe implementing these strategies is important because it provides
us a good benchmark to compare with agents that integrate more advanced machine learning
techniques later on.

To compare agent performance, we introduce the term - return of investment (ROI):

ROI — Current Value of Investment — Cost of Investment

Cost of Investment

Equation 1. Return of Investment

Baseline Agent

Baseline agent uses a buy and hold strategy. It invests all available money on the first day and
holds till the last trading day. This agent’s ROI is used as a baseline score for us to compare with
other agent’s performance.

1. Technical Indicators

SMA

SMA, smooth moving average, averages recent prices over a time window. SMA smooths out
volatility. A popular strategy is to create a 20 days short-term and a 50 days long-term SMA. If
the 20-SMA passes above the 50-SMA, an uptrend is expected, so it's an appropriate buy signal.
If the 20- SMA goes below the 50-SMA, a downward trend is expected, so it's an appropriate sell
signal. (Raudys, A., & Rabarskatie, Z., 2018)



MACD

Moving Average Convergence Divergence (MACD) is a trend-following momentum indicator. It
is calculated by ‘“‘subtracting the long term Exponential Moving Average (EMA) (26-periods)
from the short term EMA(12-periods).” Meanwhile, a signal line, a nine-day EMA, is created for
showing buy and sell signals. Investors may buy the stock when the MACD crosses above its
signal line and sell the stock when the MACD crosses below the signal line. (Wang and Kim,
2018)

RSI

The Relative Strength Index (RSI) is a technical analysis tool used to evaluate overbought and
oversold conditions in the price of a stock. Traditionally, RSI values above 70 mean a stock is
overvalued. An RSI below 30 is considered evidence that a stock is undervalued. The RSI
formula calculates the average percentage gain or loss over a certain look-back period - typically
14 days, before smoothing (Bhargavi, 2017).

ADX

Average Directional Index (ADX) is a technical indicator used to determine the strength of a
trend, comprising of a Negative (-DI), a positive (+DI) and an Average (AD) Directional Index,
all of which are used to indicate best predicted moments to buy, sell, or hold a given stock. When

ADX is over 25, it indicates a strong trend, and when the ADX is over 20, it indicates a weak
trend (Gurrib, 2018).

II. Machine Learning Methods

ARIMA Agent (Detailed explanation in appendix)

ARIMA is another common technical analysis tool that uses time-series data to predict future
values of a given stock.

ARIMA models have 3 main parameters:

1. Auto-Regressive (AR): We calculated ‘p’ - the number of lags to be used as predictors.
2. Integrated (I): We calculated ‘d’ - the number of differences required for stationarity.
3. Moving Average (MA): We calculated ‘q’ - the number of lagged forecast errors.

We chose to use Auto-ARIMA to determine the optimal parameters (p, d, and q) for each model.
We used a training period from 2010 until the beginning of our test period (8/7/2020) on the
ARIMA model fitted with Auto-ARIMA hyperparameters.

After training the ARIMA model, we used it to predict stock prices for the test period of August
7th, 2020 to April 16th, 2021. The agent would look for a >1% increase before buying and a
>1% decrease before selling. Otherwise, the agent would hold the stocks for the upcoming day.
This strategy resulted in the ROI’s that will be discussed in the results section.


https://www.investopedia.com/terms/m/momentum.asp

LSTM Agent

We utilized Roondiwala et.al (2015) and Chen et.al (2015) to reference prior work in the field to
provide a baseline LSTM model. We then tuned this model by performing a greedy
hyperparameter search to identify the optimal number of LSTM layers, dense layers, and nodes,
with the intention of bringing down the validation root mean squared error (RMSE). Through
iterative model tuning, we ended up with the following model configurations:

e S&P500: LSTM(128), LSTM(70), LSTM(50), Dense(25), Dense(1)
e Apple: LSTM(128), LSTM(64), Dense(25), Dense(1)
e Amazon: LSTM(230), LSTM(100), LSTM(70), LSTM(50), Dense(25), Dense(1)

These models were trained on 93.84% of the stock data from 2010-2020, and 6.16% of the most
recent trading days were used for testing. The model trained for 5 epochs and took in stock
opening prices from past 60 days to predict the following day’s stock opening price. Based on
these predictions, an agent with the following strategy was implemented:

e If projected gain for tomorrow’s price is

o over 2%, then buy (if can buy).

o less than -2%, then sell (if can sell).
e Else, hold position.

Deep Q Learning Agent (Detailed explanation in appendix)

Stock trading naturally fits into the reinforcement learning framework. Recent advances of
reinforcement learning have shown people its ability to tackle difficult problems. It would be
interesting to see how it performs on trading. We used Deep Q-learning to address the infinite
state space issue. (Cartea, A, Jaimungal, S., & Sanchez-Betancourt, L. 2021) (Gao, Xiang 2018)

The agent has 3 actions: buy, sell, and hold. When the agent chooses an action, the environment
checks if the action is allowed. If action is confirmed, the environment steps one day forward and
returns the reward and the new state’s observation (past 60 days of opening price). The flowchart
of environment, reward setting, and agent training procedure figures are shown below.
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Figure 4. Flow Diagram of Deep Reinforcement Learning
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Figure 5. Training Procedure of Q-learning Agent

As can be observed in Figure 5, the training runs for 500 episodes. In each episode, the agent is
given $1000 and interacts with the environment until it loses 5% of initial investment. The
process records the current state observations, the action taken by the agent, its reward, and the
next state observations into a deque of size 3000 and samples a batch of 64 records. Each record
is then used to compute Q-value of that state-action pair. The state observations become the input
for training and the Q-value becomes the y-label. After processing for 64 samples, they are then
fed into the model for fitting. Every 5 episodes, the target model is updated to have the same
weights as the fitted model for stability enhancement.

Evolution Strategy Agent (Details in appendix)

The idea of evolution strategy (ES) is to take samples from a population of individuals and let
the successful ones guide the distributions of future generations. The figure below shows an ES
optimization process. The white dots represent the internal parameters of the current model, and
the black dots around are the sampled noise parameters. A return vector is calculated for all the
noise parameters, by which the internal parameters can be updated to a better value through
iterations.
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Figure 6. Visualizing an ES Optimization Process
(Source:_https://openai.com/blog/evolution-strategies/)

Utilizing this black-box optimization method, we are optimizing a function f(w) with respect to
the input parameters w, but we make no assumptions about the structure of f. Therefore, it is a
fascinating tool to capture the characteristics of security prices movement which is hard to
model. Our model includes three components: an ES algorithm that is employing Gaussian as
search distribution, updating parameters iteratively(See table below); a neural network that is to
predict buy or sell signals based on the updated parameters; an agent which is to implement the
trading decisions and calculate the ROI.

Table 2: Evolution Strategy Algorithm Implementation

Algorithm 1 Evolution Strategies
1: Input: Learning rate «, noise standard deviation ¢, initial policy parameters 6,

2: fort=0,1,2,... do
3:  Sampleer,...en ~N(0,1)
4:  Compute returns F; = F(0; + o¢;) fori =1,...,n
50 Set#.q, + 0 + a% S Fie
6: end for
(Source: https://arxiv.org/abs/1703.03864)
Results

| Technical Indicators

The below table summarizes the ROI of each of the indicator agents on SPY, AAPL and AMZN
stock during the testing period:


https://openai.com/blog/evolution-strategies/
https://arxiv.org/abs/1703.03864

Table 3. Technical Indicator Agents” ROI on Test dataset: 7/8/2020 - 16/4/2021

SPY AAPL VA Average

SMA +14.2 % -0.7 % -84 % +2.6 %
MACD +4.1% +1.1% -6.2% -0.3%
RSI +5.9% +9.2% -4.1% +3.7 %

ADX +5.49% 55.52% 24.97% +28.66%
Baseline +24.1 % +18.2 % +4.6 % +15.6 %

II. Machine Learning Methods

ARIMA

We evaluate ARIMA’s performance on Apple, Amazon, and the S&P 500 over our time period of
interest. We also look at the RMSE normalized by initial stock price. The ROI performance is
listed in a table below with our other machine learning methods. The RMSE values are shown
here:

Table 4. ARIMA’s Test RMSE Normalized Comparison across Selected Stocks
APPL AMZN SPY

RMSE 1.05 0.99 1.08

When we normalize by opening stock price we see that the ARIMA model has the lowest RMSE
with Amazon, and the highest RMSE with the S&P 500. The ARIMA model also had the lowest
ROI with the S&P 500 - which lines up with the high RMSE.

LSTM

For the S&P 500, Apple, and Amazon LSTM models, we evaluated performance based on
RMSE over the test period of interest. As it can be observed in the below table, the test RMSE
for Apple and S&P500 is comparatively really low at around ~5. However, the test RMSE for
Amazon is relatively high at ~128. Even after greedy hyperparameter search, we could not bring
the test RMSE further down for Amazon.



Table 5. LSTM’s Test RMSE Normalized Comparison across Selected Stocks
APPL AMZN SPY

RMSE 4.21 128.65 5.92

Deep Q-Network (Detailed explanation in appendix)

Episode vs Played Days

400 —— Played Days
Expoit Percent
Episode Rewards

300

200

Played Days

100 ‘

|n|l '\hhr f A‘H WJ

‘W’* J’“’*W"T e

bt

i ,'H\

0 ﬁ‘J

Episode

Figure 7. Training result of deep Q-network

The above plot shows the training result of our deep reinforcement learning agent. The blue line
indicates the number of days the agent played for each episode. Intuitively, the more days the
agent plays, the better the agent performs. The agent is performing better as episode number
increases. However it suffers from inconsistency. Stability is a common issue in training deep
Q-networks. Even with an additional target model in hope to stabilize the system, the volatility in
the stock market still made training difficult.

Evolution Strategy

The major performance evaluation for the ES model is ROI(See following table). Meanwhile,
another way to gauge the learning performance of the model across different stocks is to compare
the rewards over generation evolution on different stocks. We demonstrate this measurement on
the figure below. We see a common trend that the reward across the stocks first experiences an
increase until reaching a plateau as the generation evolves from 0 to 500. Furthermore,



combining the following figure and table, we also highlight that the higher the reward reaches at
the end, the higher the ROI is.
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Figure 8. Reward Comparison of ES Learning Performance

The below table summarizes the ROI of each of the ML agents on SPY, AAPL and AMZN stock
during the testing period:

Table 6. ROI Performance Comparison across Machine Learning Methods

SPY AAPL AMZN Average

ARIMA +7.8 % +38.0 % +16.1 % +20.6 %
LSTM +16.6 % +32.7 % +35.0 % +28.1 %
Evolution Strategy +42.9 % +104.9 % +74.6 % +74.1 %
Deep Q Learning +7.0 % +13.2 % +9.6 % +9.3 %
Baseline +24.1 % +18.2 % +4.6 % +15.6 %

Test dataset: 7/8/2020 - 16/4/2021



Conclusions

In conclusion, the stock market is very volatile and the best algorithmic trading strategy depends
heavily on the stock characteristics and time period. Keeping this in mind, ADX was the best
performing technical indicator, on average, across our stocks. ADX had an average return of
28.7%, which beat the baseline average ROI of 15.6%. Our machine learning models had higher
average performances overall, but the evolution strategy was our best performing machine
learning model with an average performance of 74.1%.

As we look forward to areas of future work - we consider model stacking and including more
inputs to be most important. A truly successful trading strategy would make use of the strengths
of multiple algorithms. Model stacking would capitalize on each model’s strengths to create
better algorithms. We also only considered opening prices as our training inputs here, and
believe including other inputs such as volume or indicators would be beneficial.
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Appendix

ARIMA Methods

Autoregressive Integrated Moving Average (ARIMA) is another common technical analysis tool
that uses time-series data to predict future trends/values of a given stock. More specifically, it
assesses the strength of a dependent variable such as Close price, to predict future market moves
by calculating the difference between values in the series instead of using the raw Close prices.
ARIMA models comprise 3 components:

1. Auto-Regressive (AR): Showcases a model where the dependent variable, such as stock
Close price, regressed on its previous lagged values. We calculate ‘p’ which refers to the
number of lags to be used as predictors.

2. Integrated (I): Determines the number of differencing iterations on the dependent variable
to ensure stationarity is met. We calculate ‘d” which refers to the number of differences
required to make the time series stationary.

3. Moving Average (MA): Incorporates any residual error between the predicted and
observed values and applies it to the lagged values in the model. We calculate ‘q’ which
refers to the number of lagged forecast errors to be incorporated into the ARIMA model.

Deep Q Learning

Stock trading naturally fits into the reinforcement learning framework. The trading process can
be described by a partially observable Markov Decision Process. Recent advances of
reinforcement learning such as AlphaGo have shown people the power of this framework in
tackling difficult problems. We believe it would be interesting to see how it performs on stock
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trading. In particular, we picked Deep Q learning, a form of deep reinforcement learning, to
address the infinite state space issue. In typical Q-learning, the agent builds and updates a
Q-table. However, the stock market has too many states, which makes Q-learning agents
impossible to estimate the entire Q table. Deep reinforcement model replaces the Q-table with a
deep neural network. The neural network takes in state observations and directly estimates the Q
value. This is a powerful method to solve complex problems like stock trading. The below
flowchart shows the simplified framework of reinforcement learning applied to stock trading:
More details about the design of environment and agent are explained in later paragraphs.

Environment design is a crucial part of reinforcement learning that directly impacts how well an
agent can learn. We allowed three actions for an agent to take: buy a single unit of stock, sell a
single unit of stock, and hold its position. Everytime the agent makes an action, the environment
first checks if the agent has enough money or stock to perform that action. The agent is then
forced to pick the best action from the allowed action space. Once action has been confirmed, the
environment steps one day forward and returns the reward and the new state’s observation,
which is the past 60 days of opening price.

State,
Reward Action
Environment |«

Agent

———— Neural Network
State Observations Q values for each action

Flow diagram of Deep reinforcement learning

To avoid sparse reward assignment, we designed our reward to be the percentage gain/loss from
current day’s opening price to next day’s price:
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This reward setting rewards the agent for buying or selling stocks if tomorrow’s price rises or
drops respectively. Oppositely, it penalizes the agent for making bad decisions. The hold action
provides the agent an alternative option if the agent could not buy (if not enough cash) or could
not sell (no holding stocks).

Actions
Sample Rewards
batch of 64 Current state
New states
Per Epoch Compute
Q(s,A)
Reward, New state Action
Environment |

X = State Observation
y = Qvalue

e Target Model }7
/ Fit model

Update Target
Model with
Model’s weight [

every 5 iteration

Model }

Training procedure of Q-learning agent

The training process consists of two models: a model and a target model consists of the exact
same architecture. We used the exact same model architecture as the LSTM agent, but the output
layer was replaced with three nodes corresponding to the Q-values of each action. We used 2



models because training deep reinforcement learning agents is inherently unstable. An additional
model called target model is used to stabilize the system. Simply speaking, the target model is
responsible for predicting Q-values and making actions at every iteration, while the actual model
is getting fitted at every iteration. Every 5 iteration, the target model’s weight is updated with the
model’s weight.

The iteration process starts off by the agent selecting random actions. We defined the parameter
epsilon as the exploration constant, where epsilon < 1 and > 0. We also defined an epsilon decay
constant of 0.995, so as the training process proceeds, the agent will reduce its exploration and
exploit the environment more. The training continues for 500 episodes. For each episode, the
agent is given $1000 to invest in the stock market. The episode is forced to end if the agent’s
investment becomes lower than 95% of its initial investment ($1000) or there is no more stock
data to play on (step to the last day of data).

The training process begins by the agent playing one single episode. The process records the
current state observations, the action taken by the agent, its reward, and the next state
observations into a deque of size 3000 and samples a batch of 64 records. Each record is then
used to compute the real Q-value of that state action pair. The state observations become the
input for training and the actual Q-value becomes the y label. After processing for 64 X and y
samples, they are then fed into the model for fitting. The process continues for 500 episodes.

The below plot shows the training result of our deep reinforcement learning agent. The blue line
indicates the number of days the agent played for each episode. Intuitively, the more days the
agent plays, the better the agent performs. We can see the agent is performing better as episode
number increases. However it suffers from inconsistency. This is a common issue in deep
reinforcement learning. In many cases, the target model could solve the stability problem, but
because we are using reinforcement learning to trade stocks, the additional volatility in the stock
market made training even more difficult.



Episode vs Played Days

400 —— Played Days
Expoit Percent
Episode Rewards

300

200

Played Days

100

=

ey ‘ i
o, M‘l‘l'

L W ) M

L4
‘| (4 ]‘|'”

J

Episode

Due to the slow training process, we only trained our model for 500 episodes, which is far from
enough. Unfortunately, due to time limits, we did not find a solution to the stability problem, so
we had to stick with this procedure. After the agent is trained, we tested its performance on the 3
stock’s test period.

Evolution Strategy

The ES is an alternative to solve the problems where we cannot use the backpropagation to
calculate the gradients directly. For example, in reinforcement learning (RL) problems, we can
also train a neural network to make decisions to perform a sequence of actions to accomplish
some task in an environment. However, it is hard to evaluate the gradient of reward signals given
to the agent in the future to an action performed by the agent right now, especially if the reward
is realized many time-steps in the future. Even if we are able to calculate accurate gradients,
there is also the issue of being stuck in a local optimum, which exists for many RL tasks. On the
contrary, ES have competitive properties relative to RL in solving the above: indifference to the
distribution of rewards (sparse or dense), no need for backpropagating gradients, and tolerance of
potentially arbitrarily long time horizons.



